Человек весом 800 н переходит с носа на корму

Человек весом 800 н переходит с носа на корму thumbnail

При работе со своими учениками, у меня накапливается много задач. Поэтому я публикую разборы задач в свободный доступ, стараюсь делать это максимально подробно и понятно, чтобы начинающие могли прочитать и разобраться в нужной для них теме. Ну а за подробными индивидуальными консультациями и репетиторством вы можете написать в мою группу в вк или в личные сообщения. Также большое количество разборов задач вы сможете найти в моей группе Репетитор IT mentor

Задача 1. На тело массой 100 кг, лежащее на наклонной плоскости, которая образует с горизонтом угол 40°, действует горизонтальная сила 1500 Н. Определить:
1) силу, прижимающую тело к плоскости;
2) силу трения тела о плоскость;
3) ускорение, с которым поднимается тело. Коэффициент трения k = 0.10; g = 10м/с².

Задача 2. Тело движется по горизонтальной плоскости под действием силы F, направленной под углом α к горизонту. Найти ускорение тела, если на него действует сила тяжести P, а коэффициент трения между телом и плоскостью равен k . При какой величине силы F движение будет равномерным.

Задача 3. Два шара массами m1 = 2.5 кг и m2 = 1.5 кг движутся навстречу друг другу со скоростями v1 = 6 м/c и v2 = 2 м/c . Определить: 1) скорости шаров после удара; 2) кинетические энергии шаров до и после удара; 3)энергию, затраченную на деформацию шаров при ударе. Удар считать прямым, неупругим.

Прикрепляю очередной разбор задачи по физике по теме закона сохранения импульса. Неупругие шары после удара не восстанавливают свою первоначальную форму. Таким образом, сил, которые отталкивали бы шары друг от друга, не возникает. Это значит, что после удара шары будут двигаться вместе (слипшись) с одной и той же скоростью . Эту скорость определим по закону сохранения импульса. Так как шары двигаются по одной прямой, то можно записать импульс системы до удара и после удара. Считаем, что в задаче не действует диссипативных сил (сил трения, сопротивления воздуха и т.д.), поэтому импульс вдоль оси Ox сохраняется, тогда (смотри решение на картинке). Расписал довольно подробно, но если что-то не будет понятно, то задавайте вопросы в комментариях.

Задача 4. Диск массой m, радиус которого R , вращается с угловой скоростью ω0 вокруг оси, перпендикулярной плоскости диска и проходящей через его центр. После прекращения действия на него силы диск останавливается в течение времени t. Определить угловое ускорение диска и тормозящий момент, действующий на него.

Задача 5. Два тела массами m1 и m2 связаны нитью, перекинутой через блок массой M . Найти ускорение тел, считая блок сплошным диском.

Задача 6. Шар катится по горизонтальной поверхности со скоростью v . На какую высоту h относительно своего первоначального положения поднимется шар, если он начнет вкатываться на наклонную плоскость без проскальзывания?

Задача 7. На краю вращающейся с угловой скоростью ω0 платформе стоит человек массой m. После того, как человек перешёл в другую точку платформы, угловая скорость её вращения стала равной ω. Найти расстояние от оси вращения до человека, считая платформу диском массой M и радиусом R.

Задача 8. Тело массой m брошено со скоростью v0 под углом α к горизонту. Найти кинетическую и потенциальную энергию тела в высшей точке траектории.

Задача 9. На горизонтальной поверхности находятся два тела массами m1 = 10 кг и m2 =15 кг, связанные нитью. К телу массой m2 прикладывают силу F = 100 Н, направленную под углом α = 60° к горизонту. Определить ускорение грузов и силу натяжения нити, соединяющей грузы. Трением пренебречь. (обязательно указать все силы на чертеже!)

Задача 10. На поверхности стола лежит груз массой m2 = 2 кг. На нити, прикрепленной к грузу m2 и перекинутой через невесомый блок, подвешен груз m1 = 1 кг. Коэффициент трения груза о поверхность стола 0,2. Найти ускорение грузов и силу натяжения нити.

Задача 11. Лодка массой 200 кг и длиной 3 м стоит неподвижно в стоячей воде. Мальчик массой 40 кг в лодке переходит с носа на корму. Определите, на какое расстояние при этом сдвинется лодка.

Считаем, что в нашей задаче не действует внешних сил, поэтому по теореме о центре массы системы грузов, можно считать, что координаты центра масс сохраняются в проекциях на ось OX (по оси OY движения не происходит). Проведем ось Y(ноль оси X) через центр лодки, тогда можно записать координаты человека и лодки до перехода человека с носа на корму.

Задача 12. Шарик массой 5 кг подвешен на нити. Нить может выдержать максимальное натяжение 100 Н. На какой минимальный угол от положения равновесия нужно отклонить нить с шариком, чтобы он оборвал нить, проходя через положение равновесия? (обязательно сделать рисунок, указать действующие силы!)

Задача 13. Два неупругих шара массами m1=2 кг и m2=3 кг движутся со скоростями соответственно v1=8 м/c и v2=4м/с. Определить количество теплоты, выделившееся при их столкновении. Рассмотреть 2 случая: 1) шары движутся навстречу друг другу; 2) меньший шар догоняет больший.

Задача 14. Тело совершает гармонические колебания по закону x(t) = 50⋅sin(π/3⋅t) (см). Определить полную энергию тела, если его масса 0,2 кг. Какая сила действует на тело в момент времени t = 0,5 с?

Задача 15. Два математических маятника, длины которых отличаются на Δℓ =16 см, совершают за одно и то же время: один − 10 колебаний, другой − 6 колебаний. Определить длины маятников.

Задача 16. Определить, сколько молей и молекул водорода содержится в объёме V = 5 м³ под давлением Р = 767 мм.рт.ст. при температуре t = 18 ° С. Какова плотность газа?

Задача 17. Сколько кислорода выпустили из баллона ёмкостью 1 дм3, если давление его изменилось от 14 атм до 7 атм, а температура от 27°С до 7 °С ?

Задача 18. В сосуде объёмом V = 2 м³ находится смесь m1 = 4 кг гелия и m2 = 2 кг водорода при температуре 27°С. Определить давление и молярную массу смеси газов.

Задача 19. В сосуде содержится смесь газов: гелия массой 12 г и водорода массой 2 г, температура в сосуде 77°С, давление 20 кПа. Определить молярную массу и плотность смеси газов.

Задача 20. Гелий массой 20 г нагрели от 100°С до 400°С, причем газу была передана теплота 30 кДж. Найти изменение внутренней энергии гелия и совершенную им работу.

Задача 21. При изотермическом расширении от 0,1 м3 трех молей газа его давление меняется от 4,48 атм до 1 атм. Найти совершаемую при этом работу и температуру, при которой протекает процесс.

Задача 22. Моль идеального газа, имевший первоначально температуру 300ºК, расширяется изобарически до тех пор, пока его объем не возрастет в 3 раза. Затем газ охлаждается изохорически до первоначальной температуры. Определить суммарное получаемое газом количество теплоты. Обязательно нарисовать графики процессов.

Задача 23. Азот массой m = 1 кг занимает при температуре Т1 = 300 К объём V = 0,5 м³. В результате адиабатного сжатия давление газа увеличилось в 3 раза. Определить конечный объём газа и конечную температуру.

Задача 24. Газ расширяется адиабатически, причём объём его увеличивается вдвое, а термодинамическая температура падает в 1,32 раза. Какое число степеней свободы i имеют молекулы этого газа?

Задача 25. Баллон ёмкостью V = 20 л с кислородом при давлении Р = 107 Па и температуре t1 = 70 ºС нагревается до температуры t2 = 270 ºС. Какое количество теплоты при этом поглощает газ?

Задача 26. Азот, занимающий при давлении, равном Р1 = 10⁵ Па объём V1 = 10 л, расширяется вдвое. Найти конечное давление и работу, совершённую газом в процессах: а) изобарном; б) изотермическом; в) адиабатном.

Задача 27. Кислород, масса которого 200 г, нагревают от температуры Т1 =300 К до Т2 = 400 К. Найти изменение энтропии, если известно, что начальное и конечное давление газа одинаковы и близки к атмосферному.

Задача 28. Идеальная тепловая машина, работающая по циклу Карно, совершает за один цикл работу А = 1,5∙10⁵ Дж. Температура нагревателя Т1 = 400 К, температура холодильника Т2 = 260 К. Найти КПД машины, количество теплоты Q1, получаемое машиной за один цикл от нагревателя, и количество теплоты Q2, отдаваемое за один цикл холодильнику.

Задача 29. Найти суммарную кинетическую энергию Е поступательного движения всех молекул, содержащихся в объёме V = 1 дм³ газа при атмосферном давлении.

Задача 30. Чему равны средние кинетические энергии поступательного и вращательного движения молекул, содержащихся в 100 г водорода при температуре 400 К ? Чему равна полная внутренняя энергия газа?

Спасибо, что дочитали до конца, дорогие подписчики 🙂 Если вам интересен подобный контент и разборы задач, то оставляйте обратную связь в виде лайков и комментариев.

Читайте также:  Нельзя одновременно давать сухой и влажный корм

Еще много полезного и интересного вы сможете найти на ресурсах:
Репетитор IT mentor в VK

Репетитор IT mentor в Instagram

Репетитор IT mentor в Telegram

Physics.Math.Code в контакте (VK)

Physics.Math.Code в telegram

Physics.Math.Code в YouTube

Источник

Д. 51. Лиса гонится за зайцем с такой скоростью, что ее импульс равен импульсу зайца. Сможет ли лиса догнать зайца?
Масса лисы больше массы зайца. Это означает, что при равных импульсах, скорость лисы меньше, чем у зайца, т.е. лиса зайца не догонит.

Д. 52. Слон массой 4,5 т бежит со скоростью 10 м/с. С какой скоростью должен ехать автомобиль массой 1500 кг, чтобы его импульс был равен импульсу слона?

17. Импульс тела. Закон сохранения импульса

Д. 53. Во сколько раз импульс бронетранспортера на суше больше, чем в воде, если его скорость на суше равна 22,5 м/с, а в воде равна 10 км/ч?

17. Импульс тела. Закон сохранения импульса

Д. 54. Насколько изменился импульс бегуна массой 80 кг перед финишем, если в течение последних 10 с спортсмен бежал с постоянным ускорением, равным 0,2 м/с2?

17. Импульс тела. Закон сохранения импульса

Д. 55. Мячик массой 100 г, брошенный вертикально вверх, вернулся обратно через 6 с. Определите импульс мяча в момент броска и в верхней точке.

17. Импульс тела. Закон сохранения импульса

Д. 56. Камешек массой 30 г упал с высоты 20 м. Каким импульсом обладал камешек в момент удара о землю?

17. Импульс тела. Закон сохранения импульса

Д. 57. Тело массой m, брошенное вертикально вниз со скоростью v0, за время падения получило приращение импульса, равное Δр. Сколько времени тело находилось в полете, если известна средняя скорость его движения vср? С какой высоты упало тело?

17. Импульс тела. Закон сохранения импульса

Д. 58. Зная длину I качелей, предложите способ определения импульса и скорости своего тела в ниж¬ней точке траектории с использованием весов. Считать, что весы сохраняют горизонтальное положение.

17. Импульс тела. Закон сохранения импульса

Д. 59. Определите отношение импульсов двух тел 1 и 2 массами m и 3m соответственно, если модули векторов скорости (рис. 10д) отличаются в три раза. Чему равна сумма проекций векторов импульсов на ось X?

17. Импульс тела. Закон сохранения импульса

Д. 60. Импульсы четырех тел представлены с помощью векторов на рисунке 11д. Причем модули векторов соотносятся следующим образом: р1=р2, Рз=2Р1 и Р4=1,5Р1. Третье тело движется со скоростью 4 м/с, а массы тел соответственно равны 1; 4; 3; 12 кг. Какое из тел обладает максимальной скоростью? Определите сумму проекций векторов импульсов тел на каждую из осей координат X и Y и ее знак.

17. Импульс тела. Закон сохранения импульса

Д. 61. Импульсы двух тел представлены на рисунке 12д с помощью векторов. Вектор импульса р2 образует с положительным направлением оси X угол π/4, а вектор импульса р1 — угол 3π/4. Определите сумму проекций векторов на каждую из осей координат и ее знак.

17. Импульс тела. Закон сохранения импульса

Д. 62. Ознакомьтесь с условием предыдущей задачи и ответьте на поставленный вопрос, если оси координат повернуты на угол π/4 против часовой стрелки; на этот же угол по часовой стрелке.

17. Импульс тела. Закон сохранения импульса

Д. 63. Два небольших тела одинаковой массы, жестко соединенные прямым стержнем, вращаются вокруг оси О, проходящей через центр масс системы перпендикулярно стержню. Ось вращения неподвижна. Сделайте рисунок и докажите, что сумма проекций векторов импульсов тел на любую ось X, лежащую в плоскости вращения, равна нулю. Проверьте, будет ли справедливо это утверждение, если массы тел различны; ось вращения О пересекает стержень в другой точке.

Читайте также:  Корм нау для мелких пород состав

17. Импульс тела. Закон сохранения импульса

Д. 64. Теннисный мяч массой 100 г, летящий со скоростью 180 км/ч перпендикулярно вертикальной стене, отскакивает от нее без заметной потери скорости в противоположном направлении. Определите модуль изменения проекции импульса |Δрх| на ось, совпадающую с направлением движения мяча до удара.

17. Импульс тела. Закон сохранения импульса

Д. 65. Машина проезжает поворот дороги по дуге, имеющей вид 1/4 части окружности. На какой угол поворачивается при этом вектор импульса машины? Чему равны изменение проекции импульса на ось X, совпадающую по направлению с вектором импульса машины до поворота, и модуль вектора изменения импульса |Δр|?

17. Импульс тела. Закон сохранения импульса

Д. 66. Скорость тела массой 2,2 кг изменяется в соответствии с уравнением v = 10-0,2t. Определите импульс тела в начальный момент. Через какое время импульс тела уменьшится в два раза?

17. Импульс тела. Закон сохранения импульса


Д. 67. Координата конькобежца массой 75 кг на некотором стартовом участке дистанции описывается уравнением х = 5,2 + 5,2t + 1,3t2. Определите импульс конькобежца в момент начала наблюдения и его приращение за следующую секунду. Остается ли это значение постоянным для каждой последующей секунды? Через сколько времени от момента начала наблюдения импульс достигнет максимального значения, если максимальная скорость, которую может развить спортсмен, равна 13 м/с?

17. Импульс тела. Закон сохранения импульса

Д. 68. Движение тела массой 0,5 кг описывается уравнением х = 30 + 12t – 0,2t2. Определите импульс р0 тела в момент начала наблюдения. Сколько времени пройдет до того момента, как проекция импульса на ось X станет равной -р0/2? Определите модуль изменения проекции импульса.

17. Импульс тела. Закон сохранения импульса

Д. 69. Если человек спрыгивает с лодки на берег водоема с неподвижной водой, то не привязанная к причалу лодка отплывает от берега. Почему этого не происходит, если человек спрыгивает на причал с корабля?
Потому что масса корабля намного больше массы лодки и человека. При одинаковых импульсах человека и корабля, скорость корабля намного меньше скорости человека и практически незаметна.

Д. 70. Человек решил перейти от кормы к носу лодки, плывущей по течению реки. Как при этом изменится импульс человека, лодки, системы лодка — человек относительно берега реки?
Импульс человека – увеличится. Импульс лодки – уменьшится. Импульс системы человека и лодки не изменится. Это следует из закона сохранения импульса, т.к. человек и лодка взаимодействуют только друг с другом, т.е. система замкнутая.

Д. 71. Во время салюта выстрел был произведен в вертикальном направлении в безветренную погоду, причем взрыв снаряда произошел в верхней точке траектории полета. Чему равен суммарный импульс системы горящих частиц в момент взрыва?
В момент взрыва скорость снаряда нулевая, а значит и импульс нулевой. Частицы снаряда взаимодействуют во время взрыва только друг с другом, т.е. образуют замкнутую систему. Таким образом, суммарный импульс частиц до и после взрыва одинаков, т.е. равен нулю.

Д. 72. Почему при стрельбе из ружья рекомендуется плотно прижимать приклад к плечу?
При стрельбе ружье приобретает импульс, переданный ей пулей. Если ружье не прижимать к плечу, оно может травмировать стреляющего.

Д. 73. С какой целью в охотничьих ружьях применяют утяжеление ложа с помощью металлических накладок или даже заливки свинцом?
Для того, чтобы увеличить массу ружья, тем самым уменьшив скорость отдачи при выстреле. Скорость отдачи охотничьего ружья необходимо уменьшить для того, чтобы избежать травмы плеча при стрельбе.

Д. 74. Скорость пули массой 7,9 г при вылете из ствола автомата Калашникова равна 715 м/с. Определите проекцию вектора скорости, сообщаемой автоматчику массой 80 кг, на направление движения пули, если масса автомата равна 3,6 кг.

17. Импульс тела. Закон сохранения импульса

Д. 75. Почему пуля, о которой идет речь в предыдущей задаче, пробивает в стекле небольшое отверстие, а камень массой 280 г, летящий со скоростью 20 м/с, разбивает стекло?
Из-за того, что механическое напряжение, передаваемое пулей стеклу, не успевает распространиться на большое расстояние из-за малого времени взаимодействия пули со стеклом. В то же время, камень имеет меньшую скорость полета (большее время взаимодействия его со стеклом), а также большее сечение.

Д. 76. При выстреле в горизонтальном направлении пистолет приобретает импульс, противоположный по направлению импульсу пули. Почему же тогда пистолет подпрыгивает вверх?

17. Импульс тела. Закон сохранения импульса

Д. 77. С отплывающей от берега со скоростью 1,3 м/с лодки, масса которой вместе с человеком равна 250 кг, в горизонтальном направлении сбросили на берег груз. Чему равна масса груза, если скорость лодки увеличилась на 0,1 м/с?
Задача некорректно поставлена: не хватает скорости, с которой сбросили груз

Д. 78. Кабина подвесной дороги, масса которой вместе с пассажиром равна 200 кг, на некотором участке пути движется по инерции в горизонтальном направлении со скоростью 1,2 м/с. Пассажир нечаянно роняет на землю пакет массой 25 кг. Определите: сумму проекций векторов импульсов тел на направление движения до начала падения пакета; проекцию импульса пакета в момент начала падения. Изменится ли скорость кабины?

17. Импульс тела. Закон сохранения импульса

Д. 79. По данным предыдущей задачи определите, в каком направлении и какую минимальную скорость надо сообщить пакету в горизонтальном направлении, чтобы кабина остановилась; скорость кабины увеличилась в 1,5 раза.

17. Импульс тела. Закон сохранения импульса

Д. 80. Чтобы аэростат, неподвижно висящий над землей, стал подниматься вверх, надо выбросить из корзины часть балластного груза. Каким наилучшим образом надо это сделать, чтобы не вызвать резких колебаний корзины аэростата? Рассмотрите несколько вариантов: 1) выбросить груз через борт или через люк в полу корзины; 2) отпустить груз или сообщить ему начальную скорость в каком-либо направлении; 3) избавиться от груза по частям или целиком.
Для того. чтобы корзина аэростата не колебалась, сообщаемый ей импульс при выбрасывании груза должен быть как можно меньше по модулю, направлен вертикально, и приложен к центру массы корзины. Исходя из этих соображений:
1) груз лучше выбрасывать через люк в полу корзины, поскольку в этом случае сообщаемый корзине импульс вертикально направлен и ближе к центру масс;
2) отпустить груз без начальной скорости, т.к. импульс прямо пропорционален скорости тела;
3) выбрасывать груз по частям, т.к. импульс прямо пропорционален массе тела.

Читайте также:  Сухой корм gina elite sterilized cat канада

Д. 81. Тело, летевшее со скоростью 2 м/с относительно земли, мгновенно разделяется на три части массами m1=3 кг, m2= 2 кг и m3=1 кг. Первое тело продолжает движение со скоростью 6 м/с в прежнем направлении, а второе движется в противоположном направлении со скоростью 3 м/с. Определите скорость третьего тела.

17. Импульс тела. Закон сохранения импульса

Д. 82. Для чего хищная птица, камнем падающая с неба, у самой земли расправляет крылья?
Расправляя крылья, птица увеличивает площадь взаимодействия поверхности своего тела с воздухом, что в свою очередь, увеличивает число частиц воздуха, взаимодействующих с телом птицы за единицу времени. Таким образом, импульс птицы (значит, и скорость) уменьшается.

Д. 83. Почему при стыковке космических кораблей добиваются очень малой разности скоростей?
Для того, чтобы передаваемый от одного корабля другому импульс за короткий промежуток времени взаимодействия не был большим, т.к. это может привести к их повреждению.

Д. 84. На тележку массой 50 кг, катившуюся по горизонтальной поверхности со скоростью 1,4 м/с, опустили груз массой 20 кг. Как и на сколько изменится скорость тележки?

17. Импульс тела. Закон сохранения импульса

Д. 85. В центр свободно висящей мишени массой 162 г попадает стрела массой 18 г, летевшая горизонтально со скоростью 20 м/с. Какая скорость сообщается при этом мишени от вонзившейся в нее стрелы?

17. Импульс тела. Закон сохранения импульса

Д. 86. Обезьянке никак не удавалось выкатить очень гладкий упругий мячик из ямки с гладкими стенками в твердом массивном основании (рис. 13д). В зазор между мячиком и стенками ямки не удавалось просунуть даже очень тонкую веточку. И все же обезьянке удалось с помощью лап достать мячик. Объясните, как она это сделала.
Если по мячу ударить, то он подпрыгнет вверх. Это происходит потому, что при ударе по мячу сверху, он приобретает импульс, который первоначально направлен вниз. В результате упругого соударения с поверхностью, импульс мяча меняет свое направление на противоположное.

Д. 87. Почему у основания детской ледяной горки со временем образуется ряд углублений, из-за чего санки подпрыгивают?
При съезде с горки, санки имеют вертикальную составляющую импульса, которая направлена вниз. Вследствие этого, при взаимодействии санок с горизонтальной поверхностью, происходит разрушение льда, а вертикальная составляющая импульса меняет свое направление. Санки подпрыгивают вверх, затем опять опускаются, разрушая лед в другом месте. В результате этого, у основания ледяной горки могут образоваться несколько впадин.

Д. 88. Два биллиардных шара одинаковой массы, один из которых движется со скоростью v1 а другой покоится, испытывают упругий центральный удар. После столкновения первый шар останавливается. С какой скоростью будет двигаться второй шар?

17. Импульс тела. Закон сохранения импульса

Д. 89. Ознакомьтесь с условием предыдущей задачи. Пусть теперь не один, а несколько одинаковых соприкасающихся шаров выстроились в шеренгу на линии движения первого шара. Какие или какой из шаров придет в движение?
Исходя из решения задачи Д88, шар, соударяясь упруго с первым шаром из шеренги полностью передает ему свой импульс. Первый шар, в свою очередь полностью передаст импульс последующему шару, сам оставаясь в состоянии покоя. Таким образом, все шары последовательно передадут импульс последнему шару шеренги, который и придет в движение. Остальные шары останутся неподвижными.

Д. 90. По данным условия задачи Д. 64 определите: какой импульс сообщает мяч вертикальной стенке при абсолютно упругом ударе; среднюю силу, с которой стена действует на мяч, если тела находились в контакте в течение 0,01 с.

17. Импульс тела. Закон сохранения импульса

Д. 91. В чем принципиальное различие способа перемещения в воде человека и осьминога?
Человек плывет, как бы отталкиваясь руками от воды, используя чем самым сопротивление воды перемещению его рук. Осьминог выпускает струю воды в направлении, противоположном движению. Таким образом, струя воды сообщает осьминогу импульс, за счет чего тот движется.

Д. 92. Если перестать удерживать воздушный шарик из легкого материала, наполненный горячим воздухом, то он взлетит вверх. Аналогично поведет себя в начальный момент надутый, не завязанный веревочкой резиновый шарик, если вы, держа его отверстием вниз, разожмете пальцы. Какие причины вызывают движение шарика вверх в первом и во втором случае?
В первом случае воздушный шарик заставляет взлетать сила Архимеда, возникающая вследствие того, что плотность нагретого воздуха в шарике меньше, чем плотность окружающего воздуха.
Во втором случае, шар приводит в движение струя воздуха, которая сообщает ему импульс.

Д. 93. Чтобы сообщить ракете массой М первую космическую скорость v за время Δt, из сопла ракеты с постоянной скоростью и относительно ракеты должна истекать в единицу времени масса газа μ (кг/с). (Газ образуется при взаимодействии горючего с окислителем, что в совокупности называется топливом.) Желая определить необходимую для полета массу топлива m = μΔt, мальчик вспомнил закон сохранения импульса, написал уравнение MΔv = μΔtu и получил, что m = MΔv/u. На самом деле топлива понадобится гораздо больше. Что не учел мальчик?
В процессе полета струя газа сообщает импульс не только ракете, но и несгоревшему топливу. Таким образом, помимо массы самой ракеты, нужно учитывать и массу топлива.

Источник