Фермент в производстве пищи и кормов кислухина

Вы находитесь на новой версии портала Национальной Электронной Библиотеки. Если вы хотите воспользоваться старой версией,
перейдите по ссылке .

Ферменты в производстве пищи и кормов

Доступна только бумажная версия документа

335 с.

Количество страниц

О произведении

Библиотека

Российская национальная библиотека (РНБ)

Еще

Ближайшая библиотека с бумажным экземпляром издания

Источник

Информация о книге

Главная 
»
Научно-техническая литература
»
Прикладные науки. Техника
»
Технология пищевых производств
»
Пищевые производства
» Ферменты в производстве пищи и кормов

ДеЛи принт, 2002 г., 336 стр., 5-94343-021-0 , 200*144*12 мм., тираж: 1000

Описание книги

В книге изложены основы биохимии ферментов, подробно рассматриваются процессы ферментативного гидролиза растительного сырья и биомассы микроорганизмов, приведены сведения о важнейших негидролитических ферментативных реакциях. Даны основные понятия о Технологии ферментов и характеристика ферментных препаратов, используемых на отечественном рынке. Рассматриваются теоретические и практические аспекты применения ферментов в отраслях пищевой промышленности (спиртовой, пивоварении, виноделии, консервной, при производстве растительных экстрактов, пектина, сахаристых продуктов, получении и трансформации липидов), в кормлении различных групп сельскохозяйственных животных, при получении пищевых продуктов и кормов путем микробиологической биоконверсии, обезвреживании пищевых и кормовых продуктов.
Для Специалистов пищевой промышленности и сельского хозяйства, студентов и аспирантов вузов.

Поделиться ссылкой на книгу

Об авторе

Последние поступления в рубрике “Пищевые производства”

Проектирование предприятий общественного питания. Руководство к выполнению учебных проектов. Учебное пособие для СПО Бураковская Н., Пасько О., Щетинин М.Н.

В пособии отражены основные аспекты разработки технико-экономического обоснования проектируемого предприятия, представлены подробные методики выполнения технологических расчетов, принципы расчета и подбора современного высокотехнологичного оборудования, методики разработки планировочных решений проектируемых и реконструируемых предприятий….

Проектирование предприятий общественного питания. Доготовочные цеха и торговые помещения. Учебное пособие Автюхова О., Пасько О.

Учебное пособие включает основные положения и методики проектирования доготовочных специализированных цехов, а также вспомогательной и торговой группы помещений предприятий индустрии питания. Представлены варианты планировочных решений цехов с расстановкой технологического оборудования….

Безопасность пищевой продукции. В 2-х частях. Часть 2. Учебник для СПО Донченко Л.В.

Безопасность пищевой продукции — это ценное и неотъемлемое благо. Каждый из нас ежедневно употребляет пищевые продукты и должен быть уверен в том, что данные продукты не представляют собой опасности для здоровья. Учебник, состоящий из двух частей,……

Если Вы задавались вопросами “где найти книгу в интернете?”, “где купить книгу?” и “в каком книжном интернет-магазине нужная книга стоит дешевле?”, то наш сайт именно для Вас. На сайте книжной поисковой системы Книгопоиск Вы можете узнать наличие книги Кислухина О.В., Ферменты в производстве пищи и кормов в интернет-магазинах. Также Вы можете перейти на страницу понравившегося интернет-магазина и купить книгу на сайте магазина. Учтите, что стоимость товара и его наличие в нашей поисковой системе и на сайте интернет-магазина книг может отличаться, в виду задержки обновления информации.

Читайте также:  Корм для рыб тетра цихлид стикс

Источник

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-либо его дефект могут привести к серьезным отрицательным последствиям для организма.

Ферменты — самые активные среди всех известных катализаторов. Большинство реакций в клетке протекает в миллионы и миллиарды раз быстрее, чем если бы они протекали в отсутствие ферментов. Так, одна молекула фермента каталазы способна за секунду превратить в воду и кислород до 10 тыс. молекул токсичной для клеток перекиси водорода, образующейся при окислении различных соединений. Каталитические свойства ферментов обусловлены их способностью существенно уменьшать энергию активации вступающих в реакцию соединений, то есть в присутствии ферментов требуется меньше энергии для «запуска» данной реакции.

Процессы, протекающие при участии ферментов, известны человеку с глубокой древности, ведь в основе приготовления хлеба, сыра, вина и уксуса лежат ферментативные процессы. Но только в 1833 году впервые из прорастающих зерен ячменя было выделено активное вещество, осуществляющее превращение крахмала в сахар и получившее название диастазы (ныне этот фермент называется амилазой). В конце 19 века было доказано, что сок, получаемый при растирании дрожжевых клеток, содержит сложную смесь ферментов, обеспечивающих процесс спиртового брожения. С этого времени началось интенсивное изучение ферментов — их строения и механизма действия. Так как роль биокатализатора была выявлена при изучении брожения, то именно с этим процессом были связаны два установившихся еще с 19 веке названия — «энзим» (в переводе с греч. «из дрожжей») и «фермент». Правда, последний синоним применяется только в русскоязычной литературе, хотя научное направление, занятое изучением ферментов и процессов с их участием, традиционно называется энзимологией. В первой половине 20 века было установлено, что по химической природе ферменты являются белками, а во второй половине века для многих сотен ферментов уже была определена последовательность аминокислотных остатков, установлена пространственная структура. В 1969 году впервые был осуществлен химический синтез фермента рибонуклеазы. Огромные успехи были достигнуты в понимании механизма действия ферментов.

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию — синтез ДНК (ДНК-полимеразы), за ее транскрипцию — образование РНК (РНК-полимеразы). В митохондриях присутствуют ферменты, ответственные за накопление энергии, в лизосомах — большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.

Все реакции с участием ферментов протекают в основном в нейтральной, слабощелочной или слабокислой среде. Однако максимальная активность каждого отдельного фермента проявляется при строго определенных значениях pH. Для действия большинства ферментов теплокровных животных наиболее благоприятной температурой является 37-40 oС. У растений при температуре ниже 0 oС действие ферментов полностью не прекращается, хотя жизнедеятельность растений при этом резко снижается. Ферментативные процессы, как правило, не могут протекать при температуре выше 70 oС, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры).

Читайте также:  Корм премиум класса для собак с низким содержанием белка и

Молекулярная масса ферментов, как и всех остальных белков, лежит в пределах 10 тыс. — 1 млн. (но может быть и больше). Они могут состоять из одной или нескольких полипептидных цепей и могут быть представлены сложными белками. В состав последних наряду с белковым компонентом (апоферментом) входят низкомолекулярные соединения — коферменты (кофакторы, коэнзимы), в том числе ионы металлов, нуклеотиды, витамины и их производные. Некоторые ферменты образуются в форме неактивных предшественников (проферментов) и становятся активными после тех или иных изменений в структуре молекулы, например, после отщепления от нее небольшого фрагмента. К их числу относятся пищеварительные ферменты трипсин и химотрипсин, которые синтезируются клетками поджелудочной железы в форме неактивных предшественников (трипсиногена и химотрипсиногена) и обретают активность в тонком кишечнике в составе поджелудочного сока. Многие ферменты образуют так называемые ферментные комплексы. Такие комплексы, например, встроены в мембраны клеток или клеточных органелл и участвуют в транспорте веществ.

Подвергающееся превращению вещество (субстрат) связывается с определенным участком фермента, его активным центром, который формируется боковыми цепями аминокислот, находящимися часто в значительно удаленных друг от друга участках полипептидной цепи. Например, активный центр молекулы химотрипсина образуют остатки гистидина, находящегося в полипептидной цепи в положении 57, серина в положении 195 и аспарагиновой кислоты в положении 102 (всего в молекуле химотрипсина 245 аминокислот). Таким образом, сложная укладка полипептидной цепи в молекуле белка — ферменте обеспечивает возможность нескольким боковым цепям аминокислот оказаться в строго определенном месте и на определенном расстоянии друг от друга. Коферменты также входят в состав активного центра (белковая часть и небелковый компонент в отдельности ферментативной активностью не обладают и приобретают свойства фермента, лишь соединившись вместе).

Большинство ферментов отличается высокой специфичностью (избирательностью) действия, когда превращение каждого реагирующего вещества (субстрата) в продукт реакции осуществляется специальным ферментом. При этом действие фермента может быть строго ограничено одним субстратом. Например, фермент уреаза, участвующий в распаде мочевины до аммиака и углекислого газа, не реагирует на сходную по строению метилмочевину. Многие ферменты действуют на несколько родственных по структуре соединений или на один тип химической связи (например, расщепляющие фосфодиэфирную связь фермент фосфатазы).

Фермент осуществляет свое действие через образование фермент-субстративного комплекса, который затем распадается с образованием продуктов ферментативной реакции и освобождением фермента. A результате образования фермент-субстратного комплекса субстрат изменяет свою конфигурацию; при этом преобразуемая фермент-химическая связь ослабляется и реакция протекает с меньшей начальной затратой энергии и, следовательно, с намного большей скоростью. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Многие ферментативные реакции в зависимости от концентрации в среде субстрата и продукта реакции могут протекать как в прямом, так и в обратном направлении (избыток субстрата сдвигает реакцию в сторону образования продукта, в то время как при чрезмерном накоплении последнего будет происходить синтез субстрата). Это означает, что ферментативные реакции могут быть обратимыми. Например, карбоангидраза крови превращает поступающий из тканей углекислый газ в угольную кислоту (H2CO3), а в легких, напротив, катализирует превращение угольной кислоты в воду и углекислый газ, который удаляется при выдохе. Однако следует помнить, что ферменты, как и другие катализаторы, не могут сдвигать термодинамическое равновесие химической реакции, а лишь значительно ускоряют достижение этого равновесия.

Читайте также:  Лечебный корм при болезнях почек кошки

При наименовании фермента cа основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы — ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты — пепсин, химотрипсин и трипсин.

В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Aля того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. A соответствии с этой системой все ферменты a зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую yтот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей — галактоземия (приводит к умственной отсталости) — развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы в легко усваиваемую глюкозу. Причиной другого наследственного заболевания — фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина в тирозин. Определение активности многих ферментов a крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи) — в пивоварении, для мягчения мяса; пепсин — при производстве «готовых» каш и как лекарственный препарат; трипсин — при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) — в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы — для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генетической инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.

Обнаружена способность некоторых форм рибонуклеиновых кислот (рибозимов) катализировать отдельные реакции, то есть выступать в качестве ферментов. Возможно, в ходе эволюции органического мира рибозимы служили биокатализаторами до того, как ферментативная функция перешла к белкам, более приспособленным к выполнению этой задачи.

  • Фершт Э. Структура и механизм действия ферментов. М., 1980.
  • Страйер Л. Биохимия. М., 1984-1985. Т. 1. С. 104-131. O. 2. С. 23-94.
  • Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохомия человека. Т. 1. М., 1993.
  • Ферменты и нуклеиновые кислоты. – СПб.: Изд-во С.-Петерб. ун-та, 1997.
  • Молекулярная динамика ферментов. – М.: Изд-во Моск. ун-та, 2000.
  • Кислухина О. В. Ферменты в производстве пищи и кормов. – М.: ДеЛи принт, 2002.
  • Федоренко Б. Н. Ферменты и мембраны: научные основы взаимодействия. – М.: МГУПП, 2002.
  • Ферменты микроорганизмов. – Казань: Унипресс, 1998.

Источник