Методика расчета обменной энергии в кормах
+7 (967) 233-32-50
viktoriy-agro@bk.ru
v.m.taratorkin@mail.ru
В последние 15-20 лет большое внимание уделяется совершенствованию нормированного кормления коров с учетом их потребности в обменной энергии (1, 2). Следует отметить, что классические методы исследования энергетического питания животных (баланс энергии и респирационные исследования) не позволяют оперативно решать ряд вопросов, связанных с изменением физиологического состояния, живой массы, суточного надоя, жирности молока, способа содержания, температуры и влажности воздуха, количества концентрированных кормов в рационе.
Целью наших исследований была оптимизация методики определения обменной энергии у высокопродуктивных коров в разные фазы лактации и сухостойный период с применением математических моделей оценки интенсивности обмена веществ.
Описание методики. В настоящее время доказано, что балансирование рационов по обменной энергии, незаменимым аминокислотам, углеводам, жирам, микроэлементам, витаминам и другим биологически активным веществам оказывает существенное влияние на эффективность использования энергии и протеина кормов. Продуктивность животных при одном и том же потреблении сухого вещества может различаться в зависимости от структуры рациона, количества и соотношения в нем питательных веществ, физиологического состояния животных, особенностей породы, условий содержания и т.д.
В большинстве справочников и руководств, изданных после 1985 года, содержание энергии в кормах выражается в МДж обменной энергии (ОЭ). В связи с этим при переходе из одной системы в другую возникает необходимость пересчета показателей, например обменной энергии в кормовые единицы. Между содержанием кормовых единиц и ОЭ в 1 кг сухого вещества (СВ) нет пропорциональной зависимости, что обусловлено различием в эффективности использования обменной энергии в зависимости от ее количества в корме.
Пересчет обменной энергии в кормовые единицы с небольшими допущениями по точности можно проводить по следующим уравнениям: корм. ед. = 0,00791 х ОЭ2,1637; корм. ед. = 0,00728 х ОЭ2,0042; корм. ед. = 0,00735 х ОЭ2.
Для расчета ОЭ в кормах и рационах необходимо иметь сведения о содержании в них органических питательных веществ (клетчатки, сырого протеина, крахмала, сахара и т.д.). По разнице между сухим веществом и золой определяют органическое вещество корма (рациона), которое имеет усредненную энергетическую ценность 20 МДж на 1 кг. Вместе с тем в большинстве кормов и рационов минеральная часть составляет 7-10 %, поэтому заранее дать оценку валовой энергии усредненного корма (рациона) можно только с учетом содержания в нем сухого вещества. Для большинства кормов (рационов) валовая энергия (ВЭ) органических веществ составляет 18 МДж на 1 кг СВ.
В справочнике «Нормы и рационы кормления сельскохозяйственных животных» (1) приведено уравнение для расчета обменной энергии кормов и рационов по переваримым питательным веществам. Для крупного рогатого скота оно имеет вид
ОЭ = 17,48пП+31,23пЖ+13,85пК+14,78пБЭВ,
где ОЭ – обменная энергия, МДж/кг; пП – переваримый протеин, г; пЖ – переваримый жир, г; пК – переваримая клетчатка, г; пБЭВ – переваримые безазотистые экстрактивные вещества, г.
Однако использовать это уравнение можно только при известной переваримости питательных веществ, поэтому Н.Г. Григорьевым (2-5) и В.В. Щегловым (6) предложены регрессионные уравнения расчета энергетической питательности кормов по их химическому составу. Определение обменной энергии в рационе на основе составляющих его веществ позволяет избежать одной из главных неточностей существующего подхода, когда при разном сочетании кормов их питательность считают неизменной. Разбивка рационов по типу кормления помогает оптимизировать учет суммарного действия входящих в их состав кормов и более точно определять общую энергетическую питательность.
Содержание ОЭ в корме или рационе можно вычислить по формуле Аксельсона (1)
ОЭ = 0,73 х 18,0 х (СВ – Кл х 1,05) или ОЭ = 0,73 х (ВЭ в 1 кг СВ) х (СВ – Кл х 1,05).
При определении ОЭ в 1 кг сухого вещества корма в производственных условиях в формулу вводят показатели СВ (сухое вещество, кг) и Кл (содержание клетчатки, кг); ОЭ рациона – суммарное количество в рационе СВ и клетчатки (кг). При полном химическом анализе кормов 18 МДж заменяют показателем фактического содержания валовой энергии в 1 кг сухого вещества корма. При этом используют следующие энергетические коэффициенты (МДж/кг): протеин – 23,9; жир – 39,8; клетчатка – 20,0; БЭВ – 17,51.
Всероссийским институтом животноводства разработаны уравнения линейной регрессии для определения содержания ОЭ в кормах по их химическому составу (6). Формулы для расчета ОЭ в объемистых кормах жвачных животных имеют следующий вид:
ОЭ = 10,6 – 0,072 х СК (сено, сенаж);
ОЭ = 7,97 – 0,0373 х СК (солома);
ОЭ = 9,61 – 0,0236 х СК (силос);
ОЭ = 13,78 – 0,154 х СК (корнеклубнеплоды);
ОЭ = 10,8 – 0,024 х СК (зеленые корма),
где ОЭ – обменная энергия, МДж в 1 кг СВ; СК – содержание сырой клетчатки в СВ, %.
Для крупного рогатого скота разработаны и более точные уравнения множественной регрессии с учетом содержания в корме основных органических веществ:
ОЭ = 10,678 + 0,088 х СП – 0,332 х СЖ – 0,075 х СК + 0,006 х БЭВ
(сено, сенаж, травяная мука и резка);
ОЭ = 13,126 – 0,24 х СП + 1,707 х СЖ – 0,006 х СК – 0,198 х БЭВ
(солома);
ОЭ = 10,365 + 0,026 х СП + 0,275 х СЖ – 0,176 х СК + 0,047 х БЭВ
(силос);
ОЭ = 1,65 + 0,96 х СЖ + 1,12 х СК + 0,594 х БЭВ
(корнеплоды);
ОЭ = 3,761 – 0,049 х СП +1,472 х СЖ – 0,088 х СК + 0,078 х БЭВ
(зеленые корма);
ОЭ = 16,45 – 0,062 х СП + 0,16 х СЖ – 0,145 х СК – 0,026 х БЭВ
(зерно злаков и бобовых);
ОЭ = 2,795 + 0,111 х СП + 0,16 х СЖ – 0,031 х СК + 0,149 х БЭВ
(жмыхи, шроты, дрожжи),
где ОЭ – обменная энергия, МДж в 1 кг СВ; СП, СЖ, СК, БЭВ – соответственно содержание сырого протеина, сырого жира, сырой клетчатки, безазотистых экстрактивных веществ в СВ, %.
В некоторых лабораториях зоотехнического анализа кормов для определения обменной энергии используют уравнение:
ОЭ = 14,46 – 0,0007 х СП + 0,0168 х СЖ – 0,0192 х СК – 0,00028,
где количество питательные вещества выражено в граммах на 1 кг СВ.
Для концентрированных кормов и корнеплодов с низким содержанием клетчатки (менее 13 % в СВ) применяется формула (2):
ОЭ = 0,012 х СП + 0,031 х СЖ + 0,005 х СК + 0,013 х БЭВ;
для остальных кормов – следующие уравнения (7-9):
ОЭ = 0,73 х ВЭ х (1 – 0,00105 х СК),
ВЭ = 0,024 х СП + 0,039 х СЖ + 0,02 х СК + 0,0175 х БЭВ;
ОЭ = 331,53 + 1,002 х СП + 3,855 х СЖ – 3,315 х СК – 3,315 х СЗ – 3,315 х Вл,
где ОЭ – обменная энергия, Ккал/100 г корма; СП, СЖ, СК, СЗ – соответственно содержание сырого протеина, сырого жира, сырой клетчатки, сырой золы, %; Вл – содержание влаги, %
При оценке энергетической питательности рационов для высокопродуктивных коров приоритет следует отдавать не сумме обменной энергии отдельных кормов, а содержанию питательных веществ в рационе. В связи с этим можно использовать разработанное нами уравнение:
ОЭ = 0,058108 х Сп + 0,195699 х Сж – 0,0215545 х (Кр + Сах) + 17,4,
где Сп – сырой протеин, г/кг; Сж – сырой жир, г/кг; (Кр + Сах) – суммарное количество крахмала и сахаров, г/кг.
Оценка рациона по сумме обменной энергии всех входящих в его состав кормов в ряде случаев дает менее точные результаты, так как ошибки определения обменной энергии отдельных кормов суммируются. Наиболее быстро и достаточно точно питательность рациона можно определить по обменной энергии животного. В связи с этим нами разработаны уравнения для расчета теплопродукции и энергии продукции для коров с учетом условий внешней среды и энергии, затраченной организмом на механическую работу.
Выделение тепла при биосинтезе 1 кг молока оценивают в зависимости от его химического состава:
ТПм = 0,99782 х Z0,5332, где Z – содержания жира в молоке, %.
В первую фазу лактации коровы активно используют резервы тела на биосинтез компонентов молока, поэтому теплопродукцию рассчитывают следующим образом:
Тп = [М0,75 х 0,33 х е-0,333 х Хх С + ТПм х У + М0,75 х 0,0008 х
х (Тт – Тв) + 0,0504 – (0,00072 х К)] х е0,00446(Е-50),
где Тп – теплопродукция, МДж/сут; М – живая масса, кг; е – основание натурального логарифма; С – коэффициент способа содержания (при привязном содержании без прогулок С = 1; при привязном содержании с прогулками различной интенсивности С = 1,00-1,12 с приращением 1 на 0,02 на каждый 1 км пройденного пути; при беспривязном содержании С > 1,12); У – суточный удой, кг; Тт – температура тела животного, °С; Тв – температура окружающего воздуха, °С; К – содержание концентрированных кормов в рационе в расчете на сухое вещество, %; Е – относительная влажность воздуха, %; X – снижение живой массы, кг/сут.
Во вторую фазу лактации теплопродукцию у коров с положительным приростом живой массы рассчитывают по уравнению:
Тп = [М0,75 х 0,33 х е0,6 х Х х С + ТПм х У + М0,75 х 0,0008 х
х (Тт – Тв) + 0,0504 – (0,00072 х К)] х е0,00446(Е – 50),
у сухостойных коров – по уравнению:
Тп = [М0,75 х 0,33 х е0,6 х Х х С + М0,75 х 0,0008 х
х 0,0008 х (Тт – Тв ) + 0,0504 – (0,00072 х К)] х 0,00446(Е – 50),
где Тп – теплопродукция, МДж/ сут; М – живая масса, кг; е – основание натурального логарифма; X – прирост живой массы, кг/сут; С – коэффициент способа содержания; У – суточный удой, кг; Тт – температура тела животного, °С; Тв – температура окружающего воздуха, °С; К – содержание обменной энергии концентрированных кормов в рационе, %; Е – относительная влажность воздуха, %.
Чистая энергия молока взаимосвязана с содержанием в нем молочного жира: Эм = (1,377 + 0,444 х Z), где Z – содержание жира в молоке, %.
У стельных коров затраты энергии и питательных веществ значительно повышаются с увеличением срока стельности. Затраты энергии на рост плода рассчитывают по уравнению ОЭст = 1,13 х е(0,00001 х М + 0,006) х В, где М – живая масса, кг; В – срок стельности, сут. При отсутствии стельности ОЭст = 0.
Энергию отложений в организме определяют по уравнению ОЭотл = 32 ½ Х; обменную энергию использования резервов живой массы в обмене веществ рассчитывают по формуле: -ОЭотл = 24 х (-Х), где Х – потери живой массы в первую фазу лактации, кг/сут. Для расчета энергии продукции используют уравнение ОЭпрод = Эм х У + ОЭст + ОЭотл, где У – суточный удой, кг. Сумма обменной энергии потребленных веществ корма и резервов тела равна обменной энергии у коров в первую фазу лактации: ОЭж = Тп + ОЭпрод, где ОЭж характеризует обменную энергию животного, то есть сумму, эквивалентную обменной энергии потребленных кормов и использованных резервов тела; Тп – теплопродукция; ОЭпрод – энергия продукции. Затраты обменной энергии на продукцию за счет кормов в первую фазу лактации равны ОЭпрод = Эм х У + 24 х (-Х) + ОЭст, где 24 x (-Х) = -ОЭотл. Обменную энергию потребленных питательных веществ корма рассчитывают как ОЭпвк = Тп + ОЭпрод.
Во вторую фазу лактации коровы восстанавливают утраченные резервы и их молочная продуктивность практически полностью определяется количеством и качеством потребленных кормов. В этот период энергия продукции представлена суммой энергии надоя молока, прироста живой массы и энергии, затраченной на питание плода: ОЭпрод = Эм х У + 32 х X + ОЭст. Энергию продукции сухостойных коров вычисляют по уравнению: ОЭпрод = 32 х X + ОЭст; обменную энергию потребленных питательных веществ рациона рассчитывают стандартно: ОЭк = Тп + ОЭпрод, где ОЭк – обменная энергия корма.
По результатам исследований, выполненных в АПК «Щелканово» (Юхновский р-н Калужской обл.), разница между фактическим и расчетным надоем молока у коров в первую фазу лактации составила 4,5 %, разница между фактической (полученной в респирационных и балансовых опытах) и расчетной величиной обменной энергии – 5,6 % (табл.).
Описанная методика определения обменной энергии апробирована в совхозе «Красный комбинат» (Козельский р-н Калужской обл.); СПК
Результаты прогнозирования продуктивности и обменной энергии у коров в первую фазу лактации в АПК «Щелканово» (Юхновский р-н, Калужская обл.) | ||||
Корова | Надой молока, кг/сут | Обменная энергия, МДж/сут | ||
расчетный | фактический | расчетная | фактическая | |
Мимоза | 28,0 | 25,0 | 183,40 | 196,00 |
Сирень | 28,0 | 25,4 | 195,20 | 205,10 |
Мокша | 28,0 | 28,8 | 203,00 | 220,10 |
Дунька | 28,0 | 28.7 | 200,00 | 225.50 |
Клюква | 28,0 | 28,7 | 190,00 | 202,50 |
Акация | 28,0 | 25,4 | 183,60 | 196,79 |
Агата | 28,0 | 28,0 | 199,40 | 211,90 |
3ита | 28,0 | 24,0 | 179,00 | 190,90 |
Среднее | 28,0 | 26,74±1,79 | 189,20±10,20 | 200,50±6,68 |
«Архангельское» (Наро-Фоминский р-н Московской обл.); ГУСП «Зареченское» (Бежецкий р-н Тверской области); СПК «Октябрьский» (Ферзико-вский р-н Калужской обл.); ЗАО «Ивановское» (Ступинский р-н Московской обл.); ЗАО ПЗ «Коммунарка» (Московская обл.); ОАО «Агрофирма Ливенское мясо» (Орловская обл.); ФГУП ОПК «Непецино» (Московская обл.); ЗАО «Первомайское» (Московская обл.); ГУПНО «Пойма» (Московская обл.); ЗАО «Родина» (Московская обл.); СЗАО племзавод «Сергеевское» (Московская обл.); АПК «Щелканово» (Юхновский р-н Калужской обл.) (всего более 200 хозяйств Калужской, Тульской, Владимировской, Ивановской, Костромской, Вологодской, Орловской, Белгородской, Московской и других областей).
Таким образом, уравнения, разработанные нами для определения теплопродукции, энергии продукции и обменной энергии у высокопродуктивных коров в связи с живой массой, ее изменением, надоем молока, способом содержания животных и условиями внешней среды, можно использовать при расчетах обменной энергии потребленных кормов.
Л И Т Е Р А Т У Р А
1. К а л а ш н и к о в А.П., К л е й м е н о в Н.И. Нормы и рационы кормления сельскохозяйственных животных. Справ. пос. М., 1985: 7.
2. Г р и г о р ь е в Н.Г., Г а г а н о в А.П. Разработка адаптивно-вариабельных норм кормления. Мат. II Межд. конф. «Актуальные проблемы биологии в животноводстве». Боровск, 1997: 60-71.
3. Г р и г о р ь е в Н.Г., В о р о б ь е в Е.С. Методические рекомендации по оценке кормов на основе их переваримости. М., 1989.
4. Г р и г о р ь е в Н.Г., В о л к о в Н.П. Методические указания по оценке энергетической и протеиновой питательности кормов для жвачных животных. М., 1988.
5. Г р и г о р ь е в Н.Г. К вопросу о современных проблемах в оценке питательности кормов и нормировании кормления животных. С.-х. биол., 2001, 2: 89-100.
6. Щ е г л о в В.В. Новые аспекты нормирования питания лактирующих коров. Мат. II Межд. конф. «Актуальные проблемы биологии в животноводстве». Боровск, 1997: 72-81.
7. Определение содержания в кормах и рационах крупного рогатого скота обменной энергии и переваримого протеина и нормирования потребности в них (рекомендации). М., 1985.
8. Р о м а н е н к о Л.В. Полноценность кормления высокопродуктивных коров и методы его контроля. Зоотехния, 2007, 3: 10-14.
9. К а л ь н и ц к и й Б.Д., М а т е р и к и н A.M. Протеиновое питание молочных коров. Боровск, 1998.
Л.А. ЗАБОЛОТНОВ, И.А. ТИХОНОВАСельскохозяйственная биология, 2009, № 4, с. 108-112.
Спецпредложение
Предлагаем разработку “Индивидуального инвестиционно – технологического проекта технологической реструктуризации сельскохозяйственного производства”, включающего: технологический аудит, анализ выявленных нарушений, подбор наиболее эффективных технологий, технологические расчеты по обоснованию мероприятий преобразования Вашего существующего производства в высокоэффективный бизнес (собственно технологической реструктуризации), а также разработку бизнес-плана реализации Проекта.
Предлагаем консультационное сопровождение Вашего бизнеса до выхода на проектные показатели по продуктивности земли и животных, себестоимости производимой продукции и уровню рентабельности предприятия в целом.
Источник
ГОСТ Р 51038-97
Группа С19
ОКС 65.120
ОКСТУ 9209, 9709
Дата введения 1998-01-01
1 РАЗРАБОТАН Всероссийским научно-исследовательским институтом кормов им. В.Р.Вильямса
ВНЕСЕН Техническим комитетом по стандартизации ТК 4 “Комбикорма, БВД, премиксы”
2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 26 марта 1997 года N 101
3 ВВЕДЕН ВПЕРВЫЕ
4 ПЕРЕИЗДАНИЕ
1 Область применения
Настоящий стандарт распространяется на сено, сенаж, силос, комбикорма для птиц и крупного рогатого скота и устанавливает метод определения содержания обменной энергии с применением спектроскопии в ближней инфракрасной области.
Сущность метода заключается в высушивании пробы до воздушно-сухого состояния, измельчении ее до установленного размера частиц, измерении интенсивности диффузного отражения излучения в ближней инфракрасной области спектра от измельченной пробы с помощью измерительной системы, математической обработке спектральных данных и вычислении результата анализа по градуировочному уравнению, полученному по данным измерений образцов с известными значениями содержания обменной энергии, установленными с использованием показателей химического состава.
2 Нормативные ссылки
В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 4808-87 Сено. Технические условия
ГОСТ 13496.0-80 Комбикорма, сырье. Методы отбора проб
ГОСТ 13496.2-91 Корма, комбикорма, комбикормовое сырье. Методы определения сырой клетчатки
ГОСТ 13496.4-93 Корма, комбикорма, комбикормовое сырье. Методы определения содержания азота и сырого протеина
ГОСТ 13496.15-97 Корма, комбикорма, комбикормовое сырье. Методы определения содержания сырого жира
ГОСТ 23637-90 Сенаж. Технические условия
ГОСТ 23638-90 Силос из зеленых растений. Технические условия
ГОСТ 26226-95 Корма, комбикорма, комбикормовое сырье. Методы определения сырой золы
ГОСТ 27262-87 Корма растительного происхождения. Методы отбора проб
ГОСТ Р 51417-99 (ИСО 5983-97) Корма, комбикорма, комбикормовое сырье. Определение массовой доли азота и вычисление массовой доли сырого протеина. Метод Къельдаля
3 Аппаратура, материалы
3.1 Инфракрасный анализатор “Инфрапид-61” (Венгрия), “Инфраматик-800” (Швеция), “Инфралайзер-450” (фирма Бран-Люббе) и другие аналогичные приборы.
Измельчитель проб растений марки ИПР-2 или аналогичных марок.
Мельница лабораторная типов “Циклон”, QC-114, QC-124; электрические мельницы типов МРП-2, ЭМ-3А, бытовые электрокофемолки.
Сита с отверстиями диаметром 1 мм.
Сушилка проб кормов СК-1 или шкаф сушильный лабораторный СЭШ-3М с погрешностью поддержания температуры не более 2 °С или сушилка и шкаф с аналогичными техническими характеристиками.
Банки стеклянные или пластмассовые с притертой или завинчивающейся крышкой вместимостью 100-200 см.
Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже вышеуказанных.
4 Подготовка к испытанию
4.1 Отбор проб – по ГОСТ 13496.0, ГОСТ 27262.
4.2 Подготовка проб
Среднюю пробу сена, сенажа и силоса измельчают на отрезки длиной 1-3 см. Методом квартования выделяют часть средней пробы, масса которой после высушивания должна быть не менее 50 г. Высушивание проб проводят в сушильном шкафу при температуре 60-65 °С до воздушно-сухого состояния.
Допускаются другие способы сушки (после предварительной фиксации пробы в сушильном шкафу с использованием влагомера зеленой массы или микроволновой печи, лиофилизация и т.д.) при условии обязательного включения в градуировочную партию проб, высушенных этими способами.
После высушивания воздушно-сухую пробу размалывают на мельнице. Пробы комбикормов размалывают без предварительного подсушивания. Пробы всех видов кормов измельчают до прохода частиц через сито диаметром отверстий 1,0 мм.
В зависимости от имеющегося оборудования и вида корма используют следующие варианты измельчения:
– сначала размалывают на мельнице марки МРП-2 или других аналогичных марок, не снабженных ситами, и затем просеивают через сито. Трудноизмельчимый остаток на сите после ручного измельчения ножницами или в ступке добавляют к просеянной части и тщательно перемешивают;
– сначала размалывают на мельнице марки МРП-2 или других аналогичных марок, не снабженных ситами, в течение 30 с, а затем – на мельнице, снабженной ситами;
– сразу размалывают на мельнице, снабженной ситами с требующимся диаметром отверстий.
Размолотую пробу переносят в стеклянную или пластмассовую банку или пакет из полиэтиленовой пленки и используют для снятия спектра после достижения ею температуры окружающей среды. При необходимости пробу хранят в плотно закрытом виде в сухом темном месте. Пробы комбикормов, содержащих скоропортящиеся виды сырья, – мясокостную и рыбную муку, хранят в бытовом холодильнике.
Не допускается использовать для анализов пробы с затхлым, плесневелым, гнилостным и горелым запахом, а также пробы с содержанием золы, нерастворимой в соляной кислоте, превышающим нормы, указанные в стандартах на соответствующий вид корма.
4.3 Градуировка приборов
4.3.1 Градуировка прибора заключается в снятии спектров набора проб, называемого градуировочной партией проб; анализе этих проб стандартными химическими методами и вычислении содержания в них обменной энергии; получении уравнения, связывающего содержание обменной энергии со спектральными данными, пользуясь методами математической статистики.
4.3.2 Градуировочные пробы подбирают так, чтобы они были представительны по отношению к пробам, которые затем будут анализировать с использованием полученного градуировочного уравнения. Пробы градуировочной партии должны полностью охватывать весь диапазон возможных значений определяемых компонентов и быть равномерно по нему распределены, а также весь диапазон содержания влаги в анализируемом материале, учитывая возможность переувлажнения проб, а также их анализа при уровнях содержания влаги ниже, чем в воздушно-сухом состоянии.
Градуировочные партии проб для каждого вида корма (сена, сенажа, силоса), комбикорма (для отдельных видов животных) готовят отдельно. Допускается составление единых градуировочных уравнений для группы растительных кормов при условии, что они будут соответствовать требованиям 4.3.9 и раздела 6.
При работе на анализаторах, управляемых персональными компьютерами, из достаточно большой популяции проб градуировочные пробы можно выбрать, используя специальное программное обеспечение, поставляемое с приборами, путем обработки спектральных данных проб.
Количество проб для получения градуировочного уравнения, предназначенного для анализа сравнительно неоднородной популяции проб (например, с различным видовым составом, сроков и технологий заготовки кормов и т.д.), должно быть не менее 90-100 шт., а для получения градуировочного уравнения, предназначенного для анализа более однородной популяции проб (например, одного вида корма, сроков и технологии заготовки и т.д.), можно использовать меньшее количество проб. Но во всех случаях количество проб должно быть достаточным для получения градуировочного уравнения, отвечающего требованиям 4.3.9 и раздела 6.
4.3.3 Пробы, предназначенные для градуировки, готовят к спектральному анализу теми же способами и с помощью того же оборудования, что и анализируемые. Если технология пробоподготовки к спектральному анализу предполагается различной, то в градуировочную партию включают пробы, подготовленные всеми ожидаемыми способами, при условии, что получаемое градуировочное уравнение будет удовлетворять требованиям 4.3.9 и раздела 6. В противном случае для каждого способа подготовки проб к анализу получают отдельное градуировочное уравнение.
4.3.4 Химические анализы проб градуировочной партии проводят дважды (два раза).
Содержание сырого протеина определяют по ГОСТ 13496.4 и ГОСТ Р 51417.
Содержание сырой клетчатки определяют по ГОСТ 13496.2.
Содержание сырого жира определяют по ГОСТ 13496.15.
Содержание сырой золы определяют по ГОСТ 26226.
Используя результаты химических анализов, определяют содержание обменной энергии в пробах градуировочной партии.
Содержание обменной энергии в сене определяют по ГОСТ 4808, в сенаже – по ГОСТ 23637, в силосе – по ГОСТ 23638.
Содержание обменной энергии в комбикормах для птиц ОЭ, ккал в 100 г сухого вещества определяют в соответствии с методическими рекомендациями [1] по формуле
, (1)
где – массовая доля сырого протеина в сухом веществе, %;
– массовая доля сырого жира в сухом веществе, %;
– массовая доля сырой клетчатки в сухом веществе, %;
– массовая доля сырой золы в сухом веществе, %.
Содержание обменной энергии может быть выражено в МДж/кг, для чего результаты, полученные по формуле (1), умножают на коэффициент 0,042.
Содержание обменной энергии в комбикормах для жвачных животных определяют в соответствии с методическими рекомендациями [2] по формуле
, (2)
где – обменная энергия в сухом веществе корма, МДж/кг; остальные обозначения те же, что и в формуле (1).
При необходимости содержание обменной энергии определяют в расчете на воздушно-сухое вещество
в комбикормах для птиц по формуле
; (3)
в комбикормах для жвачных животных по формуле
, (4)
где – массовая доля влаги, %; остальные обозначения те же, что и в формуле (1), но в этом случае значения массовых долей сырых питательных веществ (, , , ) используют в расчете на воздушно-сухое вещество.
4.3.5 Спектры градуировочных проб снимают согласно инструкции к приборам. Особое внимание уделяют чистоте оптики, встроенного стандарта и измерительной кюветы. Кювету и окно кюветы тщательно очищают перед каждым измерением. Обеспечивают однообразие техники заполнения кюветы пробой, которую тщательно перемешивают перед загрузкой кювет, не допуская при этом ее расслоения. Избегают встряхивания и резких движений с заполненной кюветой. Если позволяют возможности вычислительного устройства, для каждой пробы проводят двухкратное заполнение кюветы при однократном измерении спектра заполненной кюветы.
При расчете градуировочных уравнений для инфракрасных анализаторов, управляемых персональными компьютерами, используют специальное программное обеспечение, поставляемое с прибором. Если возможности вычислительного устройства инфракрасного анализатора ограничены расчетом констант уравнения множественной регрессии и оно не позволяет найти оптимальные для анализа длины волн и способы преобразования спектральных данных, то необходимую информацию получают с помощью более мощных вычислительных устройств и соответствующего программного обеспечения.
4.3.6 При вычислении констант градуировочного уравнения значения содержания обменной энергии в пробах градуировочной партии вводят в расчете на сухое или воздушно-сухое вещество. В первом случае результаты анализа на приборе с использованием полученных уравнений также будут в расчете на сухое вещество. Во втором случае для вычисления констант уравнений данные о содержании обменной энергии в воздушно-сухом веществе сканируемой пробы вычисляют, исходя из содержания в ней гигроскопической влаги, определенной непосредственно перед сканированием пробы. При этом результаты анализа на приборе с использованием градуировочных уравнений также будут отнесены на воздушно-сухое состояние продукта.
4.3.7 При вычислении констант градуировочных уравнений данные для некоторых проб, значительно отклоняющиеся от линии регрессии, могут быть исключены из расчетов после тщательного выяснения причин отклонения. Причиной отклонения могут быть ошибки при снятии спектров или при выполнении химических анализов, или при введении результатов анализов в компьютер. Если такие ошибки исключены, причиной отклонения могут быть большие отличия спектра данных проб от спектров проб градуировочной популяции. В этом случае в градуировочную партию включают еще несколько подобных проб. Полученное при этом уравнение должно удовлетворять требованиям 4.3.9 и раздела 6. В противном случае из этих проб формируют отдельную градуировочную партию. При работе на приборах, управляемых компьютером, такие пробы могут быть выявлены путем использования специальных программ, поставляемых с прибором.
4.3.8 Градуировочное уравнение, полученное на одном приборе, может быть использовано для анализов на другом приборе той же модели после его оценки и, если это необходимо, корректировки для данного прибора согласно требованиям 4.3.9.
4.3.9 Градуировочное уравнение, полученное на данном приборе или перенесенное с другого прибора, подлежит обязательной оценке. Для этого подбирают партию из не менее 20 проб, не использованных при градуировке, но представительных по отношению к пробам градуировочной партии, а также к тем, для анализа которых градуируется прибор. Пробы должны охватить весь диапазон содержания обменной энергии и должны быть равномерно по нему распределены. Подготовку к анализу, химические анализы, расчеты по содержанию обменной энергии и измерение интенсивности отражения инфракрасного излучения этих проб проводят так же, как и градуировочных.
На основании сравнения результатов, полученных расчетным методом по данным результатов химических анализов () и инфракрасным методом (), рассчитывают среднюю разность или смещение по формуле
, (5)
где – результат анализа -й пробы инфракрасным методом;
– содержание обменной энергии в -й пробе, полученное расчетным методом;
– количество сравниваемых проб.
После этого вносят поправку на смещение, вычитая среднюю разность из свободного члена градуировочного уравнения .
Для проверки точности анализов вычисляют среднеквадратичное отклонение разностей между результатами , полученными инфракрасным и расчетным методами (после внесения поправки на смещение), по формуле
, (6)
где .
Значения не должны превышать для проб сена и сенажа 0,4 МДж/кг, силоса – 0,7 МДж/кг; для проб комбикормов – 2,5% относительно среднего содержания обменной энергии в сравниваемой партии проб.
Если точность полученных результатов выходит за указанные пределы, получают уравнение регрессии между результатами, полученными двумя методами, вида
, (7)
где – результат определения расчетным методом;
– результат определения инфракрасным методом;
и – константы уравнения.
После этого вносят поправку в градуировочное уравнение путем умножения всех коэффициентов, включая свободный член, на значение и прибавления значения к . Используя исправленное уравнение, вновь повторяют действия, изложенные в 4.3.9 и, если при этом превышает указанные пределы, прибор должен быть отградуирован заново.
5 Проведение испытания
Проведение испытания заключается в снятии спектра испытуемой пробы. Вычислительное устройство инфракрасного анализатора, используя заданные градуировочные уравнения, рассчитывает содержание обменной энергии, значение которого высвечивается на экране и может быть, при необходимости, выведено на печать. Анализ проб проводят используя программы, поставляемые с прибором.
Спектры испытуемых проб снимают, как изложено в 4.3.5.
6 Обработка результатов
За окончательный результат испытания принимают среднеарифметическое значение двух параллельных определений, выполненных путем двухкратного заполнения кюветы пробой. Результат вычисляют до второго десятичного знака и округляют до первого десятичного знака.
Допускаемые расхождения между результатами параллельных определений не должны превышать 2% относительно среднеарифметического значения двух параллельных определений.
Когда на приборе результаты анализа получают в расчете на воздушно-сухое вещество, содержание обменной энергии в сухом веществе вычисляют по формуле
, (8)
где – содержание обменной энергии в испытуемой пробе в расчете на воздушно-сухое вещество;
– массовая доля гигроскопической влаги в испытуемой пробе, %.
Для выборочного контроля правильности результатов в ходе серийных анализов отбирают часть проб, в которых содержание обменной энергии определяют расчетным методом на основании данных стандартных химических анализов по формулам 1-4. Расхождения между результатами (), полученными расчетным и инфракрасным методами, не должны превышать следующих значений:
– для проб сена;
– для проб сенажа;
– для проб силоса,
где – значение содержания обменной энергии, определенное расчетным методом, МДж/кг.
При анализе проб комбикормов не должно превышать 5% относительно значения содержания обменной энергии, определенного расчетным методом.
7 Стабильность работы прибора и градуировочных уравнений
7.1 Диагностику инфракрасных анализаторов проводят согласно инструкции к приборам, используя специальное программное обеспечение и контрольную пробу, поставляемую в комплекте с прибором.
7.2 Однажды проведенная градуировка применима до тех пор, пока она по точности удовлетворяет требованиям раздела 6. Однако рекомендуется не реже одного раза в год проводить оценку и коррекцию градуировочных уравнений в соответствии с требованиями 4.3.9.
8 Требования техники безопасности
8.1 Измельчение проб и заполнение кюветы измельченной пробой проводят в вытяжном шкафу.
8.2 Необходимо соблюдать требования техники безопасности при работе с электроприборами.
ПРИЛОЖЕНИЕ А (справочное). Библиография
ПРИЛОЖЕНИЕ А
(справочное)
[1] Методические рекомендации по разработке производственной оценки качества кормов. – 1982, М., типография ВАСХНИЛ, 72 с
[2] Руководство по анализам кормов. – 1982, М., “Колос”, 73 с
Текст документа сверен по:
официальное издание
Комбикорма. Часть 5. Корма.
Комбикорма. Комбикормовое сырье.
Премиксы. Методы анализа: Сб. ГОСТов. –
М.: ИПК Издательство стандартов, 2002
Источник